Утверждены на заседании региональной предметно-методической комиссии всероссийской олимпиады школьников по химии в Ставропольском крае в 2025/26 учебном году 08.10.2025 г. (Протокол № 1)

Требования к организации и проведению муниципального этапа всероссийской олимпиады школьников в Ставропольском крае в 2025/26 учебном году по химии

Требования к организации и проведению муниципального этапа всероссийской олимпиады школьников по химии в 2025/26 учебном году

1. Характеристика содержания этапа

Материал, на котором в большинстве случаев базируется содержание задач всероссийской олимпиады по химии (далее — олимпиада; олимпиада по химии) теоретического тура, разбит на пять основных блоков:

- 1) Неорганическая химия: основные классы (оксиды, кислоты, основания, соли); их строение и свойства, получение неорганических соединений; номенклатура; периодический закон и периодическая система (основные закономерности в изменении свойств элементов и их соединений);
- 2) Органическая химия: основные классы органических соединений (алканы, циклоалканы, алкены, алкины, арены, галогенпроизводные, спирты и фенолы, карбонильные соединения, карбоновые кислоты и их производные сложные эфиры, полимерные соединения); номенклатура; изомерия; строение, свойства и синтез органических соединений.
- 3) Физическая химия: строение вещества (строение атома; химическая связь); закономерности протекания химических реакций (основы химической термодинамики и кинетики).
- 4) Аналитическая химия: качественный и количественный анализ веществ.
- В программу экспериментального тура включены следующие лабораторные операции и экспериментальные методы:
- 1. Практические умения, необходимые для работы в химической лаборатории. Взвешивание (аналитические весы). Измерение объемов жидкостей с помощью мерного цилиндра. Приготовление раствора из твердого вещества и растворителя. Измерение объемов жидкостей с помощью пипетки, бюретки, мерного цилиндра. Смешивание и перемешивание жидкостей.
- 2. Качественный и количественный анализ неорганических и органических веществ. Реакции в пробирке. Обнаружение катионов и анионов в водном растворе. Групповые реакции на катионы и анионы. Качественное определение основных функциональных групп органических соединений. Титрование. Приготовление стандартного раствора. Кислотноосновное титрование. Цветовые переходы индикаторов при кислотноосновном анализе.
 - 3. Специальные измерения и процедуры. Измерение рН-метром.
- 4. Оценка результатов. Оценка погрешности эксперимента (значащие цифры, графики).

2. Основные подходы к разработке заданий

I. Условия олимпиадных задач

Условия олимпиадных задач сформулированы по-разному:

- условие с вопросом или заданием в конце (при этом вопросов может быть несколько),
 - тест с выбором ответа,
- задача, в которых текст условия прерывается вопросами (так зачастую строятся задачи на высоких уровнях олимпиады).

Основные группы олимпиадных задач по химии:

1. Качественные задачи: объяснение экспериментальных фактов (например, изменение цвета в результате реакции); распознавание веществ; получение новых соединений; предсказание свойств веществ, возможности протекания химических реакций; описание, объяснение тех или иных явлений; разделение смесей веществ.

Классической формой качественной задачи является задание со схемами (цепочками) превращений.

Схемы превращений веществ можно классифицировать следующим образом:

- 1) По объектам: а) неорганические; б) органические; в) смешанные.
- 2) По типам или механизмам реакций (в основном это касается органической химии).
- 3) По форме «цепочки» (схемы могут быть линейными, разветвленными, в виде квадрата или другого многоугольника (тетраэдра, куба и т.д.)).
 - а) Даны все вещества без указаний условий протекания реакций.
- б) Все или некоторые вещества зашифрованы буквами. Разные буквы соответствуют разным веществам, условия протекания реакций не указаны. (В схемах стрелки могут быть направлены в любую сторону, иногда даже в обе стороны (т.е. привести 2 различных уравнения реакций)).
- в) Вещества в схеме полностью или частично зашифрованы буквами и указаны условия протекания реакций или реагенты.
- г) В схемах вместо веществ даны элементы, входящие в состав веществ, в соответствующих степенях окисления.
- д) Схемы, в которых органические вещества зашифрованы в виде брутто-формул.

Другой формой качественных задач являются задачи на описание химического эксперимента.

2. Расчетные (количественные) задачи:

расчеты состава смеси (массовый, объемный и мольный проценты); расчеты состава раствора (способы выражения концентрации, приготовление растворов заданной концентрации);

расчеты с использованием газовых законов (закон Авогадро, уравнение Клапейрона-Менделеева);

вывод химической формулы вещества;

расчеты по химическим уравнениям (стехиометрические соотношения);

расчеты с использованием законов химической термодинамики (закон сохранения энергии, закон Гесса);

расчеты с использованием законов химической кинетики (закон действия масс, правило Вант-Гоффа, уравнение Аррениуса).

Есть и комбинированными олимпиадные задания, т.е. сочетающие в себе несколько типов задач.

3. Задачи экспериментального тура школьного этапа составлены так, чтобы у учащихся появился интерес к экспериментальной химии.

Освоение учащимися простейших лабораторных операций необходимо для достижения этой цели. Примерами таких задач являются небольшие практические работы на различение веществ или на простейший синтез.

Методические требования к олимпиадным задачам.

- І. Содержание задачи опирается на примерную программу содержания ВсОШ соответствующей возрастной параллели. В задачах использованы различные способы названий веществ, которые используются в быту, технике. Для успешного решения задачи необходимо не только и не столько знание фактического материала, сколько умение учащихся логически мыслить и их химическая интуиция.
- II. Решение задач. Написание решения задач является не менее трудным процессом, чем создание самого задания. Решение должно ориентировать школьника на самостоятельную работу: оно должно быть развивающим, обучающим (ознакомительным). Важно, чтобы задачи имели ограниченное число верных решений, а эти решения были понятны, логически выстроены и включали систему оценивания.
- III. Система оценивания. Ее разработка процесс не менее «энергоемкий» и такой же творческий, как написание условия и решения задачи. Система оценивания решения задачи опирается на поэлементный анализ. Особые сложности возникают с выбором оцениваемых элементов, т.к. задания носят творческий характер и путей получения ответа может быть несколько.

Рекомендации по оцениванию задач:

- 1. Решения задачи должны быть разбиты на элементы (шаги).
- 2. В каждом задании баллы выставляются за каждый элемент (шаг) решения.
 - 3. Баллы за правильно выполненные элементы решения суммируются.
- 4. Шаги, требующие продемонстрировать умение логически рассуждать, творчески мыслить, проявлять интуицию оцениваются выше,

чем те, в которых показаны более простые умения — владение формальными знаниями, выполнение тривиальных расчетов и др. За выполнение более сложных действий начисляются «бонусные баллы» и они (бонусные баллы) должны присутствовать в каждом задании.

5. Балл за каждое задание («стоимость» каждого задания) не обязательно должна быть одинаковым.

3. Требования к проведению

Муниципальный этап всероссийской олимпиады по химии проводится в соответствии с приказом Министерства просвещения Российской Федерации от 27 ноября 2020 г. № 678 «Об утверждении Порядка проведения всероссийской олимпиады школьников» по олимпиадным заданиям, разработанным региональной предметно-методической комиссией по химии с учетом методических рекомендаций, разработанных центральной методической комиссией по химии.

В муниципальном этапе олимпиады участвуют школьники 7-11 классов.

Задания разработаны по 4 возрастным параллелям (7-8, 9, 10, 11 класс).

Итоги подводятся отдельно по каждой параллели: 7, 8, 9, 10, 11 класс.

Длительность теоретического тура составляет - 180 минут, а экспериментального тура –120 минут.

Проведению теоретического тура должен предшествовать инструктаж участников о правилах участия в олимпиаде.

Участник может взять с собой в аудиторию письменные принадлежности, простой непрограммируемый калькулятор, прохладительные напитки в прозрачной упаковке, шоколад.

В аудиторию категорически не разрешается брать бумагу, справочные материалы, средства сотовой связи.

Перед началом экспериментального тура участников олимпиады по химии необходимо проинструктировать о правилах техники безопасности, сделав соответствующие записи в ведомости проведения инструктажа по технике безопасности при обращении с лабораторным оборудованием и реактивами (Приложение) и дать рекомендации по выполнению той или иной процедуры, с которой они столкнутся при выполнении задания.

Нельзя приступать к работе, пока не пройден инструктаж по технике безопасности.

Допускается проведение экспериментального тура как мысленный эксперимент. В этом случае с участниками олимпиады по химии также необходимо провести инструктаж по технике безопасности.

Все учащиеся должны работать в халате и в очках и перчатках. При выполнении экспериментального тура членам жюри и преподавателям,

находящимся в практикуме, необходимо наблюдать за ходом выполнения учащимися предложенной работы.

В случае нарушения участником олимпиады правил техники безопасности, члены жюри прекращают выполнение химического эксперимента участником и вписывают значение «0» в соответствующие поля для оценивания задания в бланке ответов.

Участники олимпиады допускаются до всех предусмотренных программой туров. Промежуточные результаты не могут служить основанием для отстранения от участия в олимпиаде.

I. Теоретический тур

- 1. Задания каждого из комплектов составлены в одном варианте, поэтому участники должны сидеть по одному за столом (партой).
- 2. Вместе с заданиями каждый участник получает необходимую справочную информацию для их выполнения (<u>периодическую систему</u>, таблицу растворимости).
- 3. Во время выполнения задания участник может выходить из аудитории. При этом работа в обязательном порядке остается в аудитории. На ее обложке делается пометка о времени выхода и возвращения учащегося.

II. Экспериментальный тур

Экспериментальный тур проводится в специально оборудованных практикумах или кабинетах химии. Для выполнения экспериментального тура участники получают необходимые реактивы, оборудование и тетради для оформления работы.

Процедура разбора заданий и показа работ

- 1. По окончании туров участники должны иметь возможность ознакомиться с развернутыми решениями олимпиадных задач.
- 2. Основная цель разбора заданий объяснить участникам Олимпиады основные идеи решения каждого из предложенных заданий на турах (конкурсах), возможные способы выполнения заданий, а также продемонстрировать их применение на конкретном задании.

Разбор задач заложен в подробных решениях, предлагаемых на олимпиаде задач.

Основная цель показа работ — ознакомить участников с результатами выполнения их работ, снять возникающие вопросы.

- 3. Показ работ проводится после проверки и анализа олимпиадных заданий в отведенное программой проведения соответствующего этапа время в спокойной и доброжелательной обстановке.
- 4. В ходе разбора заданий представляются наиболее удачные варианты выполнения олимпиадных заданий, анализируются типичные ошибки, допущенные участником Олимпиады.

Порядок подведения итогов

1. Победители и призеры соответствующего этапа Олимпиады определяются по результатам решения участниками задач туров (конкурсов). Итоговый результат каждого участника подсчитывается как сумма

полученных этим участником баллов за решение каждой задачи на теоретическом и экспериментальном турах.

- 2. Окончательные результаты проверки решений всех участников фиксируются в итоговой таблице (по каждой возрастной параллели отдельной), представляющей собой ранжированный список участников, расположенных по мере убывания набранных ими баллов. Участники с одинаковыми баллами располагаются в алфавитном порядке. На основании итоговой таблицы и в соответствии с квотой, установленной оргкомитетом, жюри определяет победителей и призеров соответствующего этапа Олимпиады.
- 3. Изменение баллов после проверки возможно только в ходе апелляции. На показе работ запрещено изменять баллы даже в случае технических ошибок. При несогласии с баллами участники олимпиады должны подать в письменной форме заявление на апелляцию о несогласии с выставленными баллами с обоснованием. Рассмотрение апелляции проводится с участием самого участника олимпиады.

результатам рассмотрения апелляции o несогласии выставленными баллами жюри принимает решение об отклонении апелляции и сохранении выставленных баллов или об удовлетворении апелляции и корректировке баллов. Процедура рассмотрения апелляций участников олимпиады, разрабатывается предметно-методическими комиссиями утверждается органом местного самоуправления, осуществляющим управление в сфере образования.

	Класс	Время (мин)	Всего баллов	Количество баллов за задание				
Предмет				1 задание	2 задание	3 задание	4 задание	Практика
Химия	7	180	80	20	20	20	20	-
Химия	8	300	100	20	20	20	20	20
Химия	9	300	100	20	20	20	20	20
Химия	10	300	100	20	20	20	20	20
Химия	11	300	100	20	20	20	20	20

	Комплекты заданий по классам (примерное коли чество страниц)	Подведение итогов по классам (если не указано — проводится в один письменный тур)		Специальное оборудование	Справочные материалы, средства связи и вычислительная техника	
Химия	7-8, 9, 10, 11	7, 8, 9, 10, 11	Теоретический тур: 7-11 – 180 минут	Экспериментальный тур: 8-11 - 120 минут	Для проведения практического тура необходимо предусмотреть химические реактивы и оборудование согласно списку. Допускается проведение экспериментального тура как мысленный эксперимент.	Использование справочных данных, кроме прилагаемых к комплекту, запрещено. Разрешено: инженерный непрограммируемый микрокалькулятор

Приложение

Ведомость проведения инструктажа по технике безопасности при обращении с лабораторным оборудованием и химическими реактивами при проведении практической части олимпиады по химии

№ п/п	Фамилия, имя, отчество инструктируемого	Дата проведения инструктажа	Вид инструктажа	Подпись инструктируемого	Подпись инструктирующего
	FJ FJ	FJ		TV TV	FU FU