Утверждены на заседании региональной предметно-методической комиссии всероссийской олимпиады школьников по астрономии в Ставропольском крае в 2025/26 учебном году 23.09.2025 г. (протокол № 1)

Требования к организации и проведению муниципального этапа всероссийской олимпиады школьников в Ставропольском крае в 2025/26 учебном году по астрономии

Настоящие рекомендации по организации и проведению муниципального этапа всероссийской олимпиады школьников (далее — муниципальный этап олимпиады) по астрономии составлены в соответствии с Порядком проведения всероссийской олимпиады школьников, утвержденным приказом Министерства просвещения Российской Федерации от 27 ноября 2020 г. № 678 «Об утверждении Порядка проведения всероссийской олимпиады школьников», и предназначены для использования муниципальными и региональными предметно-методическими комиссиями, а также организаторами муниципального этапа олимпиады.

Олимпиада по астрономии проводится в целях выявления и развития у обучающихся творческих способностей и интереса к научной (научно-исследовательской) деятельности, пропаганды научных знаний.

Сроки окончания муниципального этапа – не позднее 25 декабря.

Форма проведения олимпиады – очная.

1. Порядок организации и проведения муниципального этапа олимпиады

- 1.1. Муниципальный этап олимпиады состоит из одного теоретического тура индивидуальных состязаний участников.
 - 1.1.1. Длительность тура составляет:
 - 7 класс 3 астрономических часа (180 минут);
 - 8 класс 3 астрономических часа (180 минут);
 - 9 класс -3 астрономических часа (180 минут);
 - 10 класс -3 астрономических часа (180 минут);
 - 11 класс 3 астрономических часа (180 минут).
- 1.1.2. Участники делятся на возрастные параллели 7 класс, 8 класс, 9 класс, 10 класс, 11 класс.

Конкурс проводится отдельно внутри каждой параллели.

- 1.1.3. Для проведения тура необходимы аудитории, в которых каждому участнику олимпиады должно быть предоставлено отдельное рабочее место. Все рабочие места участников олимпиады должны обеспечивать им равные условия, соответствовать действующим на момент проведения олимпиады санитарно-эпидемиологическим правилам и нормам.
- 1.1.4. Расчёт числа аудиторий определяется числом участников и посадочных мест в аудиториях. Проведению тура предшествует краткий инструктаж участников о правилах участия в олимпиаде.

2. Необходимое материально-техническое обеспечение для выполнения заданий муниципального этапа олимпиады

- 2.1. Для проведения всех мероприятий олимпиады необходима соответствующая материальная база, которая включает в себя элементы для проведения тура.
- 2.2. Материальное обеспечение муниципального этапа олимпиады аналогично школьному этапу. Данный этап также не предусматривает выполнение каких-либо практических и наблюдательных задач по астрономии, его проведение не требует специального оборудования (телескопов и других астрономических приборов), поэтому материальные требования для их проведения не выходят за рамки организации стандартного аудиторного режима.

Каждому участнику олимпиады должны быть предоставлены:

- листы формата А4 для выполнения олимпиадных заданий;
- справочная информация, разрешенная к использованию на олимпиаде.

Участники могут использовать свои письменные принадлежности (включая циркуль, транспортир, линейку и т. п.) и непрограммируемый инженерный калькулятор. В частности, калькуляторы, допустимые для использования на ЕГЭ, разрешаются для использования на любых этапах олимпиады. Рекомендуется иметь в аудитории несколько запасных ручек чёрного цвета.

3. Перечень справочных материалов, средств связи и электронновычислительной техники, разрешенных к использованию во время проведения олимпиады

При выполнении заданий муниципального этапа олимпиады допускается использование только справочных материалов, предоставленных организаторами, предусмотренных в заданиях и критериях оценивания. Использование любых средств связи на олимпиаде категорически запрещается. Участники могут использовать собственные непрограммируемые калькуляторы.

4. Критерии и методика оценивания выполненных олимпиадных заданий

Для проверки решений участников формируется жюри, состоящее из числа педагогических, научно-педагогических работников, руководящих работников образовательных организаций, аспирантов, победителей международных олимпиад школьников и победителей и призёров заключительного этапа всероссийской олимпиады ПО астрономии И физике, a также специалистов, профессиональными знаниями, навыками и опытом в области астрономии и физики. Численность жюри муниципального этапа олимпиады составляет не менее 5 человек.

Для обеспечения объективной и единообразной проверки решение каждого задания должно проверяться одним и тем же членом жюри у всех участников в данной возрастной параллели, а при достаточном количестве членов жюри — независимо двумя членами жюри с последующей коррекцией существенного различия в их оценках одной и той же работы.

Решение каждого задания оценивается в соответствии с рекомендациями, разработанными предметно-методической комиссией. Альтернативные способы решения, не учтенные составителями заданий, также оцениваются в полной мере при условии их корректности. Во многих заданиях этапы решения можно выполнять в произвольном порядке; это не влияет на оценку за выполнение каждого этапа и за задание в целом.

При частичном выполнении задания оценка зависит от степени и правильности выполнения каждого этапа решения, при этом частичное выполнение этапа оценивается пропорциональной частью баллов за этот этап. При проверке решения необходимо отмечать степень выполнения его этапов и выставленные за каждый этап количества баллов.

Если тот или иной этап решения можно выполнить отдельно от остальных, он оценивается независимо. Если ошибка, сделанная на предыдущих этапах, не нарушает логику выполнения последующего и не приводит к абсурдным результатам, то последующий этап при условии правильного выполнения оценивается полностью.

Жюри не учитывает решения или части решений заданий, изложенные в черновике, даже при наличии ссылки на черновик в чистовом решении. Об этом необходимо отдельно предупредить участников перед началом олимпиады.

Жюри должно придерживаться принципа соразмерности: так, если в решении допущена грубая астрономическая или физическая ошибка с абсурдным выводом (например, скорость больше скорости света, масса звёзды, существенно меньшая реальной массы Земли и т. д.), все решение оценивается в 0 баллов, тогда как незначительная математическая ошибка должна снижать итоговую оценку не более, чем на 2 балла.

Ниже представлена примерная схема оценивания решений по 8-балльной системе:

- 0 баллов: решение отсутствует, абсолютно некорректно, или в нем допущена грубая астрономическая или физическая ошибка;
 - − 1 балл: правильно угадан бинарный ответ («да-нет») без обоснования;
- 1–2 балла: попытка решения не принесла существенных продвижений, однако приведены содержательные астрономические или физические соображения, которые можно использовать при решении данного задания;

- 2–3 балла: правильно угадан сложный ответ без обоснования или с неверным обоснованием;
 - 3–6 баллов: задание частично решено;
 - 5–7 баллов: задание решено полностью с некоторыми недочетами;
 - 8 баллов: задание решено полностью.

Выставление премиальных баллов сверх максимальной оценки за задание не допускается.

В тестовых заданиях, эффективных при проведении олимпиады с использованием информационно-коммуникационных технологий, оценка определяется формально на основе ответа участника по алгоритму, задаваемому для каждого задания.

5. Использование учебной литературы и интернет-ресурсов при подготовке школьников к олимпиаде

При подготовке участников к муниципальному этапу олимпиады целесообразно использовать следующие нижеприведенные источники:

- 1. Засов А.В., Сурдин В.Г. Астрономия. 10–11 классы. Москва: БИНОМ. Лаборатория знаний, 2019.
 - 2. Кононович Э.В., Мороз В.И. Общий курс астрономии. Москва: URSS, 2017.
 - 3. Куликовский П.Г. Справочник любителя астрономии. Москва: Либроком, 2016.
 - 4. Энциклопедия для детей. Том 8. Астрономия. Москва: «Аванта+», 2011.
 - 5. Сурдин В.Г. Астрономические олимпиады. Задачи с решениями. Ленанд, 2018.
 - 6. Сурдин В.Г. Астрономические задачи с решениями. Москва: Либроком, 2014.
- 7. Иванов В.В., Кривов А.В., Денисенков П.А. Парадоксальная Вселенная. 250 задач по астрономии. СПбГУ, 2010.
- 8. Угольников О.С. Всероссийская олимпиада школьников по астрономии: содержание олимпиады и подготовка конкурсантов. Москва: АПКиППРО, 2007.
- 9. Угольников О.С. Астрономия, 10–11 классы, задачник. Москва: Просвещение, Центр «Сферы», 2018.
- 10. Татарников А.М., Угольников О.С., Фадеев Е.Н. Сборник задач и упражнений. 10–11 классы. Москва: Просвещение, 2018.
 - 11. Сайт Всероссийской олимпиады по астрономии http://www.astroolymp.ru.

ПРИЛОЖЕНИЯ

Приложение 1. Методическая программа олимпиады Общие принципы составления программы

Методическая программа, определяющая темы курса астрономии, которые могут быть затронуты в заданиях муниципального этапа олимпиады в той или иной возрастной параллели, была переработана центральной предметно-методической комиссией в 2019 году и вступила в действие с 2019/2020 учебного года.

Основным принципом построения программы является последовательное и непрерывное прохождение школьником ее разделов в рамках подготовки, вне зависимости от его результатов на всероссийской олимпиаде в том или ином учебном году. Каждый переход к последующему этапу предусматривает глубокое освоение одного или двух новых разделов, выстроенных в соответствии с логикой изучения курса астрономии на трёх циклах — начальном, базовом и углублённом, с минимизацией частоты смены тем. Таким образом, подготовка будет наилучшим образом способствовать не только практике решений олимпиадных заданий, но и общему астрономическому образованию школьника.

Имея непрерывную структуру прохождения разделов и уровней, естественную для изучения предмета, программа характеризуется «диагональным» соответствием с определенными этапами всероссийской олимпиады, описанным в следующем разделе. В связи с этим, на ранних этапах олимпиады не встречаются трудные вопросы поздних этапов олимпиады предыдущих лет обучения. При переходе обучающегося в следующий класс вопросы смещаются в раннюю сторону на один этап.

Определенные вопросы данного перечня требуют углубленной подготовки по физике и математике. В этом случае соответствующие аспекты смежных дисциплин указываются в конце раздела.

В комплект заданий, предлагаемых участникам на том или ином этапе, могут входить как задания текущего уровня, соответствующие указанным разделам программы, так и связанные с ранее изученными разделами. Возможно также включение заданий, охватывающих несколько таких тем.

Таблица Уровни (римские цифры) и разделы (арабские цифры) тематического списка вопросов, соответствующие разным этапам всероссийской олимпиады в разных возрастных параллелях

Этап олимпиады	Школьный	Муниципальный	Региональный	Заключительный
5-6 классы	I (1, 2)			
7 класс	II (3)	III (4)		
8 класс	III (4)	IV (5)		
9 класс	IV (5)	V (6, 7)	VI (8, 9)	VII (10, 11)
10 класс	V (6, 7)	VI (8, 9)	VII (10, 11)	VIII(12), IX (13)
11 класс	VI (8, 9)	VII (10, 11)	VIII (12)	X (14, 15)

Обоснование распределения.

Приведённая «диагональная» структура распределения позволяет сохранить последовательность освещения тем участником вне зависимости от результатов его выступления на олимпиаде в том или ином учебном году. Это важно для прохождения всех этапов, в том числе заключительного. На региональном и заключительном этапах рассматриваются темы не ниже базового цикла. При этом задания, связанные с темами углублённого цикла (разделы 13–15), приводятся только на заключительном этапе в 10 и 11 классах.

ТЕМАТИЧЕСКИЙ СПИСОК ВОПРОСОВ

УРОВЕНЬ I (4-6 классы, школьный этап).

Раздел 1. Классическая астрономия (начальный цикл).

§ 1.1. Звёздное небо.

Объекты, наблюдаемые на дневном и ночном небе: Солнце, Луна, звёзды, планеты, искусственные спутники Земли, метеоры, кометы, Млечный путь, туманности, галактики. Созвездия, наиболее яркие звёзды и характерные объекты неба Земли, характерные условия их видимости в России и других странах мира. Ориентирование по Полярной звезде. Некоторые яркие звёзды и другие объекты, видимые из Северного и Южного полушария Земли.

§ 1.2. Земля, её свойства и движение.

Три базовых факта о Земле: шарообразная форма, вращение вокруг своей оси и вокруг Солнца. Форма и размеры Земли. Смена времен года, равноденствия и солнцестояния. Основные единицы времени: солнечные сутки и тропический год. Видимый путь Солнца по небу, зодиакальные созвездия.

§ 1.3. Луна, её свойства и движение.

Движение Луны вокруг Земли и осевое вращение Луны. Смена фаз Луны. Синодический месяц. Основные типы солнечных и лунных затмений, условия их наступления.

Раздел 2. Строение Вселенной (начальный цикл).

§ 2.1. Солние и планеты.

Геоцентрическая и гелиоцентрическая системы мира. Строение Солнечной системы: Солнце; планеты и их спутники; карликовые планеты; астероиды, кометы и другие малые тела. Астрономическая единица. Расстояние от Солнца, строение и (качественно) физические характеристики планет. Наблюдение планет, их видимое отличие от звёзд. Крупнейшие спутники планет. Искусственные объекты космоса: спутники, зонды, автоматические межпланетные станции. Исследование ближнего космоса.

§ 2.2. Звёзды и расстояния до них.

Характерные расстояния до ближайших звёзд в сравнении с масштабами Солнечной системы, принципы измерения расстояния. Скорость света, световой год, его связь с астрономической единицей. Характеристики звёзд: масса, радиус, температура. Представление о двойных звёздах и экзопланетах. Звёздные скопления, их основные свойства.

§ 2.3. Объекты далекого космоса.

Каталог Мессье, его самые известные объекты. Туманности. Галактики, их основные свойства и типы. Представление о расстояниях до галактик и масштабах Вселенной.

Смежные вопросы физики.

Понятия массы и плотности. Объём и плотность шарообразного тела. Прямолинейное распространение света, понятие о преломлении света.

УРОВЕНЬ II (7 класс, школьный этап).

Раздел 3. Небесная сфера (начальный цикл, часть 1).

§ 3.1. Географические координаты.

Градусная и часовая мера угла. Широта и долгота на поверхности Земли. Полюса, экватор, параллели и меридианы. Географическое положение континентов и крупнейших стран мира (качественно). Фигура Земли. Экваториальный и полярный радиусы. Длина окружности экватора, меридиана.

§ 3.2. Горизонтальные координаты на небесной сфере.

Понятие небесной сферы. Основные точки на небесной сфере: зенит, надир, полюсы мира. Стороны горизонта, небесный меридиан. Изменение вида звёздного неба в течение суток и в течение года. Подвижная карта звёздного неба. Суточное движение небесных светил, восход, заход, кульминация. Высота и астрономический азимут светила. Полюс мира, его высота над горизонтом. Истинный и математический горизонт. Представление об атмосферной рефракции, её величина у горизонта.

Смежные вопросы математики.

Градусная и часовая мера угла. Понятие сферы, большие и малые круги. Формула для длины окружности. Теорема о равенстве углов со взаимно перпендикулярными сторонами.

УРОВЕНЬ III (7 класс, муниципальный этап; 8 класс, школьный этап). Раздел 4. Небесная сфера (начальный цикл, часть 2).

§ 4.1. Угловые измерения на небе.

Угловые расстояния между небесными объектами. Угловые размеры объекта, их связь с линейными размерами (при известном расстоянии, малые углы).

§ 4.2. Параллакс и геометрические способы измерений расстояний.

Определение радиуса Земли из астрономических наблюдений. Зависимость расстояния до видимого горизонта и его положения от высоты наблюдения на Земле. Общее понятие параллакса. Геометрический метод определения расстояния до астрономических объектов. Горизонтальный и годичный параллакс. Парсек, его связь с астрономической единицей и световым годом. Характерные значения суточного параллакса близких объектов (Солнца, Луны, искусственных спутников Земли) и годичного параллакса ближайших звёзд.

Влияние суточного параллакса близких светил на их высоту над горизонтом.

§ 4.3. Экваториальные координаты на небесной сфере.

Большие и малые круги небесной сферы, принципы построения систем сферических координат. Склонение и часовой угол. Высоты светил в верхней и нижней кульминации для любой точки Земли, незаходящие и невосходящие светила. Угол между линиями небесного экватора и горизонтом в точке их пересечения в зависимости от широты места. Выражения для углового расстояния между двумя точками неба для элементарных случаев (близкие точки, точки на горизонте или экваторе, на одном азимуте, меридиане или круге склонения).

Стереографическая проекция.

§ 4.4. Экваториальные координаты и время.

Прямое восхождение светила и звёздное время. Соотношение звёздных и солнечных суток. Местное солнечное время. Всемирное время, поясное и декретное время. Часовые пояса и зоны, гражданское (административное) время, линия перемены дат. Сезонный перевод часов. Юлианские дни.

§ 4.5. Видимое движение Солнца и эклиптические координаты.

Эклиптика, ее положение в экваториальной системе координат. Полюса эклиптики, их положение на небе. Гелиоцентрическая система координат в Солнечной системе. Тропики и полярные круги на Земле. Изменение склонения Солнца в течение года, полярный день, полярная ночь. Климатические и астрономические пояса Земли. Гелиоцентрическая система координат в Солнечной системе.

§ 4.6. Основы летоисчисления и измерения времени.

Календарные год, месяц и сутки, их соотношение с тропическим годом, синодическим месяцем и солнечными сутками. Системы различных календарей. Високосный год, юлианский и григорианский календарь. Солнечные часы.

Смежные вопросы математики.

Радианная и часовая мера угла. Угловой размер тела. Прямоугольный треугольник. Теорема Пифагора. Элементы тригонометрии. Стандартная запись числа. Математические операции со степенями. Пользование непрограммируемым инженерным калькулятором.

УРОВЕНЬ IV (8 класс, муниципальный этап; 9 класс, школьный этап). Раздел 5. Кинематика Солнечной системы (начальный цикл).

§ 5.1. Кинематика планет в Солнечной системе (приближение круговых орбит).

Упрощенная запись III закона Кеплера для круговой орбиты (как эмпирический факт). Угловая и линейная скорость планеты относительно Солнца. Синодический и сидерический период планеты. Внутренние и внешние планеты. Конфигурации и условия видимости планет.

§ 5.2. Малые тела Солнечной системы (приближение круговых орбит).

Движение карликовых и малых планет (в предположение круговой орбиты). Представление о движении комет и метеорных потоках. Внешние области Солнечной системы. Пояс Койпера, облако Оорта.

§ 5.3. Движение Луны и спутников планет (приближение круговых орбит).

Синодический и сидерический периоды Луны, их связь. Солнечные и лунные затмения. Величина фазы, продолжительность, стадии затмения. Характерные расстояния и периоды обращения спутников планет. Определение скорости света на основе анализа движения спутников планет.

Смежные вопросы математики.

Подобие треугольников. Возведение в степень, квадратные и кубические корни.

Смежные вопросы физики.

Понятие периода движения по окружности, угловой скорости равномерного кругового движения. Прямолинейное распространение света.

УРОВЕНЬ V (9 класс, муниципальный этап; 10 класс, школьный этап). Раздел 6. Небесная механика (начальный цикл).

§ 6.1. Закон всемирного тяготения, движение по круговой орбите.

Закон всемирного тяготения. Ускорение свободного падения и сила тяжести на различных небесных телах. Круговая (первая космическая) и угловая скорость. Вес и невесомость. Связь атмосферного давления на поверхности планеты и силы тяжести, оценка массы атмосферы.

§ 6.2. Механика планет в Солнечной системе (приближение круговых орбит).

Период обращения, выражение III закона Кеплера в обобщенной формулировке для круговых орбит. Линейная скорость планеты относительно Земли. Петлеобразное движение планет, геоцентрическая угловая скорость планеты на небе в момент основных конфигураций.

§ 6.3. Движение искусственных спутников и Луны вокруг Земли (приближение круговой орбиты). Движение спутников планет.

Приливы, их периодичность. Искусственные спутники Земли на низких орбитах, их видимое движение на небе. Торможение спутников в атмосферах планет. Геостационарные спутники.

Смежные вопросы математики.

Сложение и вычитание векторов.

Смежные вопросы физики.

Закон всемирного тяготения, законы Ньютона. Сила тяжести, вес тела. Величина ускорения свободного падения, центростремительного ускорения. Инерциальные и неинерциальные системы отсчета. Законы Ньютона. Первая космическая (круговая) скорость.

Раздел 7. Астрономическая оптика (начальный цикл).

§ 7.1. Схемы и принципы работы телескопов.

Линзы и зеркала, простейшие оптические схемы телескопов — рефракторов и рефлекторов. Построение изображений, фокусное расстояние. Угловое увеличение, масштаб изображения, разрешающая способность телескопа. Выходной зрачок, равнозрачковое увеличение. Представление об ограничении разрешающей способности телескопа (качественно), атмосферное ограничение разрешающей способности. Вид различных небесных объектов в телескоп. Представление о приемниках излучения (глаз, ПЗС-матрица и т. д.). Некоторые виды монтировок (альт-азимутальная, экваториальная).

Смежные вопросы физики.

Законы геометрической оптики. Отражение и преломление света на границе двух сред. Плоские и сферические зеркала, линзы. Построение изображений.

УРОВЕНЬ VI (9 класс, региональный этап; 10 класс, муниципальный этап; 11 класс, школьный этап).

Раздел 8. Звёздная астрономия (базовый цикл).

§ 8.1. Энергия излучения.

Понятия мощности излучения (светимости), энергетического потока излучения, плотности потока излучения, освещенности, яркости. Убывание плотности потока излучения обратно пропорционально квадрату расстояния (без учёта поглощения).

§ 8.2. Шкала звёздных величин.

Видимая звёздная величина. Формула Погсона. Видимые звёздные величины наиболее ярких звёзд и планет. Поверхностная яркость, её независимость от расстояния, звёздная величина фона ночного неба.

§ 8.3. Зависимость звёздной величины от расстояния.

Зависимость звёздной величины от расстояния до объекта в отсутствие поглощения. Модуль расстояния. Изменение видимой яркости планет при их движении вокруг Солнца (без учета фазы, случай круговых орбит). Абсолютная звёздная величина звёзды, абсолютная звёздная величина тел Солнечной системы.

§ 8.4. Электромагнитные волны.

Длина волны, период и частота, скорость распространения в вакууме и в среде, показатель преломления. Диапазоны электромагнитных волн. Видимый свет, длины волн и цвета. Прозрачность земной атмосферы для различных диапазонов электромагнитных волн.

§ 8.5. Излучение абсолютно чёрного тела.

Закон Стефана-Больцмана. Эффективная температура и радиус звёзды. Светимость звёзды и освещённость от неё, связь с абсолютной и видимой звёздной величиной.

§ 8.6. Солние.

Строение и химический состав. Поверхность Солнца, пятна, их температура и время жизни. Циклы солнечной активности. Вращение Солнца. Солнечная постоянная.

§ 8.7. Движение звёзд.

Эффект Доплера. Лучевая и трансверсальная скорость звёзды. Собственное движение и параллакс звёзды.

§ 8.8. Двойные и затменные переменные звёзды.

Движение двух тел сопоставимой массы для случая круговых орбит. Центр масс. Обобщенный III закон Кеплера для кругового движения. Затменные переменные звёзды, главный и вторичный минимум, их глубина и длительность.

§ 8.9. Планеты и экзопланеты.

Сферическое и геометрическое альбедо. Зона обитаемости. Качественное понятие о парниковом эффекте. Движение экзопланет вокруг звёзд для случая круговых орбит.

Транзиты экзопланет, их временные и фотометрические свойства, условия наблюдения.

§ 8.10. Звёздные скопления.

Характеристики и наблюдаемые свойства рассеянных и шаровых звёздных скоплений и входящих в них звёзд. Расположение скоплений на небе. Метод группового параллакса определения расстояний до скоплений.

§ 8.11. Основы галактической астрономии.

Представление о строении нашей Галактики. Движение Солнца в Галактике.

Смежные вопросы математики.

Логарифмическое исчисление. Площадь поверхности сферы. Телесный угол. Приближенные вычисления. Правила округления, число значащих цифр. Степенная запись и приближенные вычисления с большими и малыми числами. Анализ графиков.

Смежные вопросы физики.

Общее понятие энергии, мощности, потока энергии, плотности потока энергии, яркости, освещенности. Понятие об электромагнитных волнах, длина волны, период и частота, скорость распространения, диапазоны электромагнитных волн. Понятие об абсолютно чёрном теле. Виды теплопередачи. Эффект Доплера. Понятие центра масс.

Раздел 9. Астрономическая оптика (базовый цикл).

§ 9.1. Ограничение разрешающей способности телескопа.

Понятие о дифракции. Дифракционное ограничение разрешающей способности телескопа.

§ 9.2. Светосила и проницающая способность телескопа.

Относительное отверстие телескопа, его проницающая способность. Видимый блеск точечных и протяженных источников при наблюдении в телескоп. Представление об ограничениях на проницающую способность телескопа (фон ночного неба).

§ 9.3. Основные приемники излучения.

Свойства и строение человеческого глаза. Дневное и ночное зрение. Равнозрачковое увеличение телескопа. Фотоаппараты. Диафрагма, время экспозиции. ПЗС-матрицы, строение и принципы работы. Отношение сигнал/шум. Аберрации оптики. Виньетирование, глубина резкости.

Смежные вопросы физики.

Понятие об интерференции и дифракции. Пределы применимости геометрической оптики. Понятие о дифракции света. Свойства и строение человеческого глаза. Аберрации оптики.

УРОВЕНЬ VII (9 класс, заключительный этап; 10 класс, региональный этап; 11 класс, муниципальный этап).

Раздел 10. Небесная механика (базовый цикл).

§ 10.1. Законы Кеплера, движение по эллипсу.

Эллипс, его характеристики — большая и малая оси, эксцентриситет. Три закона Кеплера для случая большой центральной массы. Потенциальная энергия взаимодействия точечных масс. Импульс и момент импульса. Перицентр и апоцентр, скорость движения в этих точках. Параболическая (вторая космическая) скорость. Эксцентриситет и скорости в перицентре параболы и гиперболы.

§ 10.2. Небесная механика в Солнечной системе.

Характеристики орбит планет, карликовых планет и астероидов. Кометы, их движение в Солнечной системе. Геоцентрическая и гелиоцентрическая скорость. Метеорные потоки, радианты. Межпланетные перелеты по траектории Цандера-Гомана. Великие противостояния Марса. Фаза произвольного освещенного шара, равенство линейной и площадной фазы. Изменение видимой яркости планет и комет по ходу их движения для случая эллиптических орбит с учетом фазы. Движение спутников планет. Третья космическая скорость, гравитационная связанность системы.

§ 10.3. Система Солнце – Земля – Луна.

Характеристики орбиты Луны, перигей и апогей. Солнечные и лунные затмения для случая произвольных расстояний до Солнца и Луны. Кольцеобразно-полные затмения

Солнца. Покрытия Луной звёзд и планет, условия их наблюдений. Либрации Луны.

§ 10.4. Задача двух тел и звёздная динамика.

Распространение законов Кеплера на случай произвольных масс. Обобщенный III закон Кеплера для эллиптического движения. Приведённая масса. Доплеровский метод открытия и анализа двойных систем и экзопланет. Элементы орбит двойных звёзд и экзопланет (элементарные случаи). Восстановление характеристик орбит двойных звёзд из наблюдений (элементарные случаи). Движение звёзд в поле центрально-симметричных масс (звёздных скоплений, центров галактик).

Смежные вопросы математики.

Эллипс, связь различных характеристик эллипса. Площадь эллипса. Понятие о параболе и гиперболе. Теоремы синусов и косинусов. Сложение и вычитание векторов.

Формулы приближенного вычисления для малых параметров.

Смежные вопросы физики.

Импульс, момент инерции, момент импульса. Потенциальная энергия взаимодействия точечных масс. Законы сохранения энергии, импульса и момента импульса для случая точечных масс. Космические скорости. Движение в поле сферически-симметричной массы.

Раздел 11. Небесная сфера (базовый цикл).

§ 11.1. Уравнение времени.

Истинное и среднее Солнце. Истинное и среднее солнечное время, уравнение времени, его характерные значения на протяжении года. Аналемма.

§ 11.2. Аберрация света и поправки к координатам светил.

Топоцентрические и геоцентрические координаты. Изменение видимых положений светил вследствие движения Земли. Параллактический и аберрационный эллипсы звёзд на разных эклиптических широтах. Поправки к гелиоцентрическим координатам и лучевым скоростям звёзд.

§ 11.3. Прецессия оси вращения Земли.

Предварение равноденствий, звёздный (сидерический) и тропический год, их соотношение. Изменение экваториальных и эклиптических координат звёзд вследствие прецессии. Нутация (качественно).

Смежные вопросы математики.

Работа с графиками и таблицами. Линейная аппроксимация, определение коэффициентов линейной зависимости. Оценка погрешностей прямых и косвенных измерений. Понятие о среднеквадратическом отклонении.

Смежные вопросы физики.

Момент силы, момент импульса, импульс момента силы. Основное уравнение динамики вращательного движения.

УРОВЕНЬ VIII (10 класс, заключительный этап; 11 класс, региональный этап). Раздел 12. Элементы астрофизики (базовый уровень).

§ 12.1. Квантовая природа света.

Квантово-механическая модель атома. Понятие об энергетических уровнях электронов. Квантовые и волновые свойства света. Фотоны, фотоэффект. Энергия и импульс квантов, связь с частотой и длиной волны. Давление света. Эффект Пойнтинга-Робертсона.

§ 12.2. Основы спектрального анализа.

Спектр излучения. Понятие спектральной линии излучения и поглощения, линейчатый и непрерывный спектр. Спектр атома водорода и водородоподобных ионов.

Виды задания спектра (как функции частоты или длины волны).

§ 12.3. Спектр излучения звёзд.

Характерный вид спектра излучения абсолютно чёрного тела. Закон смещения Вина. Фотометрические системы UBVRI, показатели цвета. Цветовая температура. Болометрическая звёздная величина, болометрическая поправка. Потемнение дисков звёзд к краю.

§ 12.4. Классификация звёзд.

Спектральные классы звёзд, их связь с эффективной температурой. Классы светимости звёзд (сверхгиганты, гиганты, карлики). Диаграммы «спектр-светимость» и «цвет-светимость» (Герцшпрунга-Рассела), главная последовательность. Соотношение «масса-светимость» для звёзд главной последовательности.

§ 12.5. Ядерная физика и механизмы энерговыделения звёзд.

Динамическая, тепловая и ядерная шкалы, их характерные времена. Связь массы и энергии покоя. Дефект массы, энергия связи и зависимость удельной энергии связи от числа нуклонов. Синтез и распад, выделение энергии (качественно). Законы сохранения заряда и энергии в ядерных реакциях. Свойства элементарных частиц. Условия протекания термоядерных реакций в недрах звёзд, протон-протонный цикл. Нейтрино.

§ 12.6. Эволюция нормальных звёзд.

Звёздообразование, его области в Галактике. Масса Джинса. Типы звёздного населения в галактиках. Стадия главной последовательности. Стадия красного гиганта, синтез тяжёлых элементов в ядре. Равновесие и перенос энергии в звёздах. Эволюционные треки маломассивных и массивных звёзд на диаграмме Герцшпрунга-Рассела, вид этой диаграммы для звёздных скоплений, определение их возраста по положению «точки поворота». Звёздные ассоциации.

§ 12.7. Пульсирующие переменные звёзды.

Цефеиды, их характеристики. Зависимость «период-светимость», определение расстояний. Представление о полосе нестабильности на диаграмме Герцшпрунга-Рассела.

Звёзды типа RR Лиры, долгопериодические переменные звёзды.

§ 12.8. Поздние стадии эволюции звёзд.

Белые карлики, нейтронные звёзды, чёрные дыры. Пределы Чандрасекара, Оппенгеймера-Волкова. Гравитационный радиус. Новые звёзды. Сверхновые звёзды, их классификация и основные свойства. Планетарные туманности и остатки вспышек сверхновых. Пульсары.

§ 12.9. Межзвёздная среда.

Плотность, температура и химический состав межзвёздной среды. Пылевые облака. Области Н I и Н II. Молекулярные облака. Линия 21 см. Газовые и диффузные туманности.

§ 12.10. Галактики и основы космологии.

Классификация и наблюдательные свойства галактик. Местная группа галактик. Типы звёздного населения. Сверхмассивные чёрные дыры в галактиках, активные ядра галактик, квазары. Закон Хаббла, красное смещение.

Смежные вопросы математики.

Производная функции. Исследование функций на основе производной, геометрический смысл производной.

Смежные вопросы физики.

Квантовые и волновые свойства света. Фотоны. Энергия и импульс фотонов. Внешний фотоэффект. Давление света. Квантово-механическая модель атома. Постулаты Бора. Стационарные состояния атома. Понятие об энергетических уровнях электронов в атоме. Виды спектров. Спектральный анализ. Спектр атома водорода и водородоподобных ионов. Связь массы и энергии. Дефект массы, энергия связи и удельная энергия связи. Законы сохранения в ядерной физике. Синтез и распад ядер. Термоядерные реакции. Основные свойства элементарных частиц (электрон, протон, нейтрон, фотон, нейтрино).

Свойства идеального газа. Понятие о температуре, давлении газа, концентрации частиц.

УРОВЕНЬ IX (10 класс, заключительный этап).

Раздел 13. Небесная сфера (углубленный уровень).

§ 13.1. Суточные пути светил (общий случай).

Основы сферической тригонометрии. Параллактический треугольник. Преобразования горизонтальных, экваториальных и эклиптических координат. Вычисление углового расстояния между точками небесной сферы для произвольного случая. Азимуты и часовые углы восхода и захода светил для произвольного склонения и широты.

§ 13.2. Система Солнце-Земля-Луна (общий случай).

Вращение линии узлов и линии апсид лунной орбиты, тропический, аномалистический и драконический месяцы. Наклон лунной орбиты к эклиптике, условия для наступления солнечных и лунных затмений различных типов. Циклы затмений, сарос. Серии покрытий Луной звёзд и планет. Предельная эклиптическая широта и расстояние от узла для наступления затмений различных типов, покрытия звёзды или планеты.

§ 13.3. Движение близких тел в небе Земли (общий случай).

Видимый путь Луны и искусственных спутников в небе Земли. Триангуляция близких объектов (спутников, метеоров). Учёт несферичности Земли. Основы современных систем спутниковой навигации.

§ 13.4. Галактическая система координат.

Основные точки и большие круги, преобразования в другие системы небесных координат. Положение центра Галактики и галактических полюсов в небе Земли. Характерные положения различных типов небесных объектов в галактической системе координат.

Смежные вопросы математики.

Основы сферической тригонометрии, сферические теоремы синусов и косинусов. Площадь шарового слоя, участка сферы. Линейная аппроксимация, определение её коэффициентов.

УРОВЕНЬ X (11 класс, заключительный этап).

Раздел 14. Небесная механика (углублённый цикл).

§ 14.1. Элементы орбит.

Пространственное положение орбиты, кеплеровы элементы, основные точки и направления. Элементы параболической и гиперболической орбиты. Эксцентриситет,

прицельный параметр и угол между асимптотами гиперболы. Орбиты двойных звёзд и экзопланет в проекции на небесную сферу (общий случай).

§ 14.2. Движение в поле тяжести двух и более тел.

Точки Лагранжа. Приливное ускорение. Сфера Хилла, полость Роша. Представление об устойчивости систем. Изменение орбит малых планет и комет при сближении с большими планетами, активные и пассивные гравитационные маневры. Высота приливов (элементарная теория). Приливное разрушение спутников (элементарная теория). Приливное трение (качественное представление).

§ 14.3. Движение систем с переменной массой и энергией.

Уравнения Циолковского и Мещерского. Теорема о вириале для гравитационносвязанных систем. Движение спутников в атмосферах планет, движение тел около звёзд с сильным звёздным ветром. Эволюция тесных двойных систем. Понятие о гравитационных волнах.

Смежные вопросы математики.

Парабола и гипербола, их геометрические свойства и характеристики. Понятие производной функции, ее геометрический и физический смысл.

Раздел 15. Астрофизика и космология (углубленный цикл).

§ 15.1. Формула Планка.

Спектральная мощность излучения единицы поверхности. Формула Планка, приближения Релея-Джинса и Вина, область их применимости. Яркостная температура.

Закон Кирхгофа.

§ 15.2. Гидростатическое равновесие звёзд.

Взаимодействие излучения с зарядами. Гидростатическое равновесие звёзд, предел светимости Эддингтона.

§ 15.3. Основы спектроскопии.

Интерференция и дифракция. Дисперсия света, спектральные приборы (призма, дифракционная решетка). Спектральное разрешение. Спектры различных астрономических объектов. Влияние температуры среды на ширину спектральной линии.

§ 15.4. Перенос излучения в среде.

Преломление света и атмосферная рефракция для произвольного положения объекта. Спектральная зависимость преломления, «зелёный луч». Влияние преломления на яркостные характеристики объектов. Оптическая толщина. Поглощение и рассеяние света в атмосферах Земли и планет, закон Бугера. Отражение света различными поверхностями, закон Ламберта. Межзвёздное поглощение света, его зависимость от длины волны. Избыток цвета, трёхцветные диаграммы, звёздная величина объекта на заданном расстоянии при наличии поглощения. Метод фотометрического параллакса определения расстояний до звёзд.

§ 15.5. Всеволновая астрономия.

Приемники излучения в гамма-, рентгеновской, ультрафиолетовой, инфракрасной и радиоастрономии. Янский. Угловое разрешение радиотелескопов и радиоинтерферометров.

§ 15.6. Физика атмосфер планет.

Тепловой баланс планет и парниковый эффект. Озоновый слой в атмосфере Земли, его оптические свойства. Серебристые облака. Строение атмосфер планет Солнечной системы, представления об атмосферах экзопланет.

§ 15.7. Магнетизм во Вселенной.

Дипольное магнитное поле. Магнитное поле токового слоя. Магнитное давление.

Магнитосферы небесных тел. Энергия магнитного поля и его переход в другие формы энергии.

§ 15.8. Галактика и галактики.

Строение и морфология галактик различных типов. Кривые вращения, темная материя. Функции светимости звёзд, начальная функция масс, отношение «масса/светимость». Соотношения Талли-Фишера и Фабер-Джексона.

§ 15.9. Основы теории относительности.

Принцип относительности, принцип инвариантности скорости света. Преобразования Лоренца, релятивистское сложение скоростей. Сокращение длины и замедление времени. Эффект «светового эхо». Релятивистский эффект Доплера. Гравитационное красное смещение (в слабых полях). Представление о гравитационном линзировании.

§ 15.10. Космология.

Крупномасштабная структура Вселенной. Прошлое и будущее Вселенной. Расширение Вселенной. Масштабный фактор. Модель однородной изотропной Вселенной. Уравнение Фридмана (качественное понимание), эволюция масштабного фактора в рамках ньютоновской физики. Критическая плотность Вселенной. Барионное вещество, тёмная материя и темная энергия. Реликтовое излучение, его свойства.

Смежные вопросы математики.

Интегрирование простейших функций и его геометрический смысл. Приложение дифференциальных уравнений в задачах по физике и астрономии.

Смежные вопросы физики.

Волновые свойства света. Понятие об интерференции, дифракции, дисперсии света. Магнитное поле. Магнитная индукция. Сила Ампера. Сила Лоренца. Движение заряженных частиц в магнитном поле. Основы специальной теории относительности. Постулаты Эйнштейна. Преобразования Лоренца. Релятивистский закон сложения скоростей.

Релятивистское сокращение длины и замедление времени.

Приложение 2. Форма бланка ответов

	nc	occ	и	йс	ка	ая	0	л	им	ш	тал	да	шк	О.Л	њн	ик	ОВ																	эт	a
	P						_																		него		a.ma		- 5			_	_		_
АБ	E	ВГ			Е	Ж		3		K	Л	M	Н	O	П	P	C	Т	У	Ф	Х	Ц	Ч	Ш	Щ		Ы	Ь	Э	Ю	я	(a)	8	9	Т
АВ	(E)	Е	F	G	I	Η	Ι	J	K	L	M	N	О	P		R			U					Z	1	2	3	4		6	7	0	Ţ
							ļ	\equiv				F						=													=				ļ
пред	ĮΜ	ET	_	L		L	L	_	L	L	L	L	L	L	L	L	L	L	L			L	L	L	Ц				L		KJ.	IAC	CC	L	ļ
	_	+	+	+		Н	+	_	\vdash	\vdash	╁	\vdash	\vdash	Н	\vdash	1	H	H													-	H	H		H
ДАТА	1	+	+	+		L	1		L	L	١.	L	_	L	_	_	H	H													-	H	H		ł
	F						1																									F			ŧ
			+		Ш	ИФ	P	У	ЧА	CI	Ш	1КА																							
	Ļ	_	4	_		L	_	\sqcup	L	_	L		L		Ļ		L	_		_	L		L			_			L		L	_	L		J
	t	$^{+}$	+				t																												t
ФАМ	Ш.	ш	I																																
имя		Τ																																	
отчі	EC	ГВО)																																_
																												_							Ī
Докум	п								ий л кден			ть			Г] ,,,	спо	DT										1 p	1		ство		Беде	ma	
	,	эгідс		ЛБС	IDV			O A	ДСГ	IMM						IIa														ССИ	HCK	шл	Редс	ра	Ï
ce	ри	a	Ļ	4		L	ļ	\sqcup	L	L	L	_		-	но	мер)	L							Ш			L	Ин	юе	-	-			ł
Дата ј	noz	кле	ни	я		Н	t	\neg		Н	Н	+	Н	\vdash	\vdash			H														\vdash			t
							Ì								\vdash																				ļ
Дома												H	+	7	⊢	╀	┞	⊢				L			\vdash	_					-	H			ł
Моби Элект												\vdash	+	7	+	╁	┢	⊢	\vdash		\vdash	\vdash	\vdash	\vdash	\vdash	_			Н		\vdash	\vdash	\vdash	\vdash	t
		_	Ϊ	ш,д		, ,	I			Ė								\vdash														H			_
Муни		пап	ит	ет		Г		_																	_										_
WIYHH	Щ	iiaii	ri i				T																												Ī
Сокра	ащ	енн	oe	наі	ΙM	енс	В	ан	ие (эбр	азо	ват	ельн	юй	opı	ани	гзап	ии ((шк	элы	()														
	F	+	7	7			Ŧ	=		F	Н	\vdash	H	Н				\vdash							\Box	=					\vdash	\vdash	\vdash		Ŧ
Сведе	ені	ия о	пе	да	гоі	ax-	-н	ac	тав	нин	cax																					\vdash			t
1. Фа	ам	или	я																																
Им	мя			Τ																															
Oı	гче	ство	5	T																															
Сокра	ащ	енне	oe	наі	ИM	енс	В	ан	ие с	обр	азо	ват	елы	юй	орі	ани	гзац	ии ((шк	олы	(1														I
			T				Ī																												T
2. Фа	ам	или	я																																
Им	мя																																		
		ство																								_		_				_		_	_
	ащ	енне	oe	наі	ИM	енс	В	ан	ие с	эбр	азо	ват	елы	юй	opi	ани	гзац	ии ((шк	ЭЛЫ	(1)														L
Сокра																																			
		_	1	_			Ţ	=																											Į